作者:hacker发布时间:2022-07-09分类:网站入侵浏览:241评论:2
国家数据: 可以查询到国家统计局调查统计的各专业领域的主要指标时间序列数据。
阿里指数: 最权威专业的行业价格、供应、采购趋势分析。
微指数: 微指数是对提及量、阅读量、互动量加权得出的综合指数,更加全面的体现关键词在微博上的热度情况。
微信指数: 微信里面搜一搜“微信指数”就能直接找到。立足于微信生态,依托海量用户数据,微信指数具有天生优势。
淘宝生意参谋: 生意参谋基于“支付金额=访客数*转化率*客单价”这一公式,帮你快速定位生意波动的核心因素。
搜狗指数: 全网热门事件、品牌、人物等查询词的搜索热度变化趋势,掌握网民需求变化.
头条指数: 头条指数是巨量引擎云图推出的一种数据产品。
360指数: 趋势是以360产品海量用户数据为基础的大数据展示平台。
飞瓜数据: 飞瓜数据是短视频领域权威的数据分析平台,提供抖音数据和快手数据等。
七麦数据: 七麦数据是国内专业的移动应用APP数据分析平台。
百度指数: 你可以研究关键词搜索趋势、洞察网民兴趣和需求、监测舆情动向、定位受众特征。
京东商智: 丰富的运营数据,覆盖电商全域,提升运营效率。多维度行业竞争数据,刻画行业趋势,洞察消费特性,辅助运营决策。
Java :只要了解一些基础即可,做大数据不需要很深的Java 技术,学java SE 就相当于有学习大数据。基础
Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。
好说完基础了,再说说还需要学习哪些大数据技术,可以按我写的顺序学下去。
Hadoop:这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapReduce和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapReduce是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。
记住学到这里可以作为你学大数据的一个节点。
Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。
Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么程度,你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。
Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。
Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变得很简单,不会再费劲的编写MapReduce程序。有的人说Pig那?它和Pig差不多掌握一个就可以了。
Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapReduce、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。
Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。
Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰溜溜的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接收方(比如Kafka)的。
Spark:它是用来弥补基于MapReduce处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。
这里先说下什么是大数据。大数据营销是指基于多平台的大量数据,依托大数据技术的基础上,应用于互联网广告行业的营销方式。大数据营销衍生于互联网行业,又作用于互联网行业。依托多平台的大数据采集,以及大数据技术的分析与预测能力,能够使广告更加精准有效,给品牌企业带来更高的投资回报率。
大数据营销的核心在于让网络广告在合适的时间,通过合适的载体,以合适的方式,投给合适的人。
大数据营销的主要用途
1.基于用户的需求定制改善产品。消费者在有意或无意中留下的信息数据作为其潜在需求的体现是企业定制改善产品的一项有力根据。ZARA公司内部的全球资讯网络会定期把从各分店收集到的顾客意见和建议汇总并传递给总部的设计人员,然后由总部作出决策后再立刻将新的设计传送到生产线,直到最终实现“数据造衣”的全过程。利用这一点ZARA作为一个标准化与本土化战略并行的公司,还分析出了各地的区域流行色并在保持其服饰整体欧美风格不变的大前提下做出了最靠近客户需求的市场区隔。同样,在ZARA的网络商店内,消费者意见也作为一项市场调研大数据参与企业产品的研发和生产,且由此映射出的前沿观点和时尚潮流还让“快速时尚”成为了ZARA的品牌代名词。
2.开展精准的推广活动。基于数据的精准推广活动可大致分为三类:
首先,企业作为其产品的经营者可以通过大数据的分析定位到有特定潜在需求的受众人群并针对这一群体进行有效的定向推广以达到刺激消费的目的。红米手机在QQ空间上的首发就是一项成功的“大数据找人”精准营销案例。通过对海量用户的行为泡括点赞、关注相关主页等)和他们的身份信息泡括年龄、教育程度、社交圈等)进行筛选后,公司从6亿Q
cone用户中选出了5000万可能对红米手机感兴趣的用户作为此次定向投放广告和推送红米活动的目标群体并最终预售成功。
其次,针对既有的消费者,企业可以通过用户的行为数据分析他们各自的购物习惯并按照其特定的购物偏好、独特的购买倾向加以一对一的定制化商品推送。Turge佰货的促销手册、沃尔玛的建议购买清单、亚马逊的产品推荐页无一不是个性化产品推荐为企业带来可预测销售额的体现。
最后,企业可以依据既有消费者各自不同的人物特征将受众按照“标签”细分(如“网购达人”),再用不同的侧重方式和定制化的活动向这些类群进行定向的精准营销。对于价格敏感者,企业需要适当地推送性价比相对较高的产品并加送一些电子优惠券以刺激消费:而针对喜欢干脆购物的人,商家则要少些干扰并帮助其尽快地完成购物。
3.维系客户关系。召回购物车放弃者和挽留流失的老客户也是一种大数据在商业中的应用。中国移动通过客服电话向流失到联通的移动老客户介绍最新的优惠资讯:餐厅通过会员留下的通讯信息向其推送打折优惠券来提醒久不光顾的老客户消费;Youtube根据用户以往的收视习惯确定近期的互动名单并据此发送给可能濒临流失的用户相关邮件以提醒并鼓励他们重新回来观看。大数据帮助企业识别各类用户,而针对忠诚度各异的消费者实行“差别对待”和“量体裁衣”是企业客户管理中一项重要的理念基础。
标签:大数据找人平台有哪些
已有2位网友发表了看法:
访客 评论于 2022-07-09 13:13:15 回复
直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变得很简单,不会再费劲的编
访客 评论于 2022-07-09 05:33:23 回复
多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。记住学到这里可以作为你学大数据的一个节点。Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相