右侧
黑客技术
当前位置:网站首页 > 黑客教程 > 正文

城轨里测速定位的作用_测速 地铁

作者:hacker发布时间:2022-07-09分类:黑客教程浏览:122评论:3


导读:导航:1、交警的定点测速电子眼工作原理是什么?怎样测定车速超速?2、我的车上有GPS定位和测速功能,请问一下这个测速功能是根据什么来测速的呢!3、测速定位的优缺点...

导航:

交警的定点测速电子眼工作原理是什么?怎样测定车速超速?

侧面测试原理是:行驶中车辆、雷达和雷达与车道垂直点构成一个直角三角形,雷达发射雷达波,遇到车身反射回来,雷达即可计算出雷达与车辆之间直角三角形斜边的长度了,而雷达到车道之间的距离是预先知道的。

根据勾股定理,就可以计算出车辆到垂直点的距离,即另一条直角边的长度了。雷达根据两次发射雷达波,就可以算出车辆两个时间点之间走了多长距离(两次测算出的直角边长度相减即可)。用该距离除以时间间隔,就得到车辆的速度了。

正前方测试原理是:两次发射雷达波,根据回波定位两个时间点车辆位置,把两个位置坐标进行相减运算,即可得到车辆在两次雷达波发射时间内走了多长距离,用该距离除以雷达波发射时间间隔,即可得到车辆速度。

测速雷达发现有车辆超速,会立刻开启照相程序,对涉嫌超速车辆进行高精度拍摄,记录下该车辆的车牌已经驾驶员特征。交警会立即通报前方守候的稽查警员对嫌疑车辆进行拦截检查,同时往稽查点传送嫌疑车辆超速证据。

扩展资料:

区间测速是在同一路段上布设两个相邻的监控点,原理是基于车辆通过前后两个监控点的时间来计算车辆在该路段上的平均行驶速度,并依据该路段上的限速标准判定车辆是否超速违章。

定点测速:

其实就是在某一个地点对来往车辆经过测速位置的瞬间速度进行记录,对经过这个地点的司机起到警示作用。但是现在很多司机会选择在车上安装电子狗检测前方的测速设备,当快到测速点的时候选择踩刹车躲避设备的抓拍。

这样虽然可以躲避电子设备的抓怕,但是却有极大的安全隐患,有可能会使后方来不及刹车的车主追尾前方车辆。还有的司机朋友会在经过测速点后以超过120KM/小时的速度更快行驶,起不到规范安全驾驶的作用。

定点测速的测速效果不是特别理想,所以又有了区间测速

区间测速是交警部门投入的另外一种测速设备,这种测速原理是在一个路段上设置相邻的两个测速点,通过记录车辆经过这个路段的时间来计算出车辆通过这个路段的平均速度,这个测速方法更加科学公正。

例如在一个限速120KM/小时的路段,一辆车经过60公里的路段用的时间是30分钟,那么这辆车经过这个路段的平均速度是120KM/小时。如果这辆车用的时间少于30分钟,这辆车就超速了,会面临后面的处罚,即使中途换了车道,系统也是会自动识别抓拍

定点测速有固定测速和流动测速两种测速方式:

1 固定测速就是交警部门在一些需要监控的地点设置测速仪器监控和抓拍超速车辆

2 流动测速是交警部门在一些临时需要监控的地点设置可移动的测速仪器,具体地点是不知道的

需要提醒注意的是:这两种测速方式有的路段是混合使用,区间测速没有超速,但是可能会有定点超速。所以一定不要有侥幸心理

参考资料:百度百科——区间测速

我的车上有GPS定位和测速功能,请问一下这个测速功能是根据什么来测速的呢!

车上固有的测速装置是对车轮轴进行测速。

GPS测速是通过卫星每一秒钟对车辆进行重新定位来测速的,由于GPS信号传送与反馈,比车轴测速会滞后一两秒。手机上也有GPS导航和定位,当你拿着手机奔跑时,手机GPS导航也会显示速度。

测速定位的优缺点

传统的电子狗是通过接收无线电波信号来进行运作的,是依靠的是接收厂家预先埋置的发射器所发射的信号做出语音警报的。但由于其私自占用无线电频率以及较高的误报比率,使得此类产品在广泛应用上面临诸多阻。基于GPS的新型电子狗是将全球卫星定位系统与电子狗相结合全新的电子设备理念。该产品并无接收任何交通监控信号而进行运作,也由于GPS已被批准全球公开免费使用,所以无须交纳任何GPS费用。同时GPS电子狗又具有较大的扩充性,在语音警示的功能上能够不断地增加;对日增的电子违章拍照地点也能无限增加。这将为广大的驾驶者带来更多的安全驾驶意识,减少驾驶者的违章罚款。

铁路上什么位置会用到加速度传感器,请说的仔细点,谢谢

加速度传感器在高速铁路的测速和定位技术中成为当前的主流产品。

随着高速铁路飞速发展,在时速超过350km/h的高速铁路线路上,列车的测速定位问题显得越来越重要。

测速和定位的精度问题从根本上制约着高速铁路列车运行中自动控制系统的控制精度。为确保列车运行安全,并充分发挥运输效能,只有时刻掌握高速列车运行的即时速度和位置,才能确保列车的正点到达和安全运行。传统的轨道电路定位法由于定位粗糙、精度不够,并且无法检知列车的即时速度,难以满足高速列车的定位要求。还有一种利用电机方式实现测速定位方法,该方式只适用于列车运行速度较低的线路。测速和定位还可通过外加输入信号直接获取列车的位置和速度信息,但该方式的测量精度受到一些因素的制约,在性价比方面存在局限性。加速度传感器在高速铁路的测速和定位技术中成为当前的主流产品,应用较广。

加速度传感器是一种能够测量加速力的电子设备。加速力是物体在加速过程中作用在物体上的力,可以是常量或变量。一般加速度传感器根据压电效应原理工作,加速度传感器利用其内部由于加速度造成的晶体变形产生电压,只要计算出产生的电压和所施加的加速度之间的关系,就可将加速度转化成电压输出。还有很多其他方法制作加速度传感器,如电容效应、热气泡效应、光效应,但其最基本的原理都是由于加速度使某种介质产生变形,通过测量其变形量并用相关电路转化成电压输出。

轮轴脉冲转速传感器是利用车轮的周长作为“尺子”测量列车走行距离,根据所测距离测算列车运行速度。虽然可以用轮轴脉冲转速传感器来测定了车的速度。然而,存在一定缺陷:即车轮空转或打滑会使列车速度的测量结果存在误差,为解决此类问题,在列车车轴上加装一个加速度传感器,配合脉冲转速传感器使用。该方式工作原理:在列车打滑期间,把机车的内加速度作为测速的信息源,该信息与车轮旋转的状态等信息不相关,而在其余工作时间仍用轮轴脉冲传感器测速,所以该方式称为基于惯性加速度传感器的测速。在车轮打滑时,由加速度传感器测得加速度及车轮打滑前加速度的倾斜分量,而计算出车轮打滑时的列车运行加速度,再将该值积分即得车轮打滑时列车实时运行的速度。

在高速列车运行过程中,能否准确及时地获得列车位置信息是列车安全有效运行的保障。

相对传感器是根据预先确定的或先前测量的距离、位置等信息所安装的一种设备。该方式目前由轮轴传感器实现。其工作原理:将传感器输出频率与轮轴转速成正比的脉冲信号,通过对频率进行一系列换算先得出速度,再由速度对时间进行积分得到距离。相对传感器在工作时必须首先确定其相对于大地的绝对位置和取向。为此,在地面适当位置必须加装地面传感器,俗称信标。当机车通过时,车上感应器接收到地面传感器提供的绝对位置信息,使列车对距离信息进行更新,得到新的初始位置,从而克服了相对传感器的误差缺陷。由于相对传感器工作的局限性,绝对传感器成为未来高速铁路运行中列车定位的主流技术。绝对传感器可直接提供绝对位置和取向信息,进而实现列车的测距定位。

利用传感器进行测速和定位方法简单、经济实用,测量数据误差在规定范同,而加速度传感器在高速铁路的应用较广,是目前应用的主导产品。现已出现的GPS移动通信和卫星定位技术方式就是通过外加输入信号直接获取列车的位置和速度信息来实现测速和定位的,但该方式的测量精度受到一些因素的制约,暂时尚未推广。但随着其技术成熟,移动通信、卫星定位在高速铁路的应用前景将更为广阔。相信在不久的将来加速度传感器会在高铁上随处可见。参考资料传感器专家网

如你需要了解更多传感器最新技术发展趋势请关注传感器专家网微信公众帐号:sensorexpert或是传感器专家网

未来城轨列车定位技术的要求

2 轨旁定位技术

2.1 利用轨道电路的定位技术

2.1.1 轨道电路的定位原理

轨道电路是以铁路线路的两根钢轨作为导体,并用引接线连接信号发送、接收设备所构成的电气回路。轨道电路有机械绝缘和电气绝缘两种类型。采用机械绝缘的轨道电路,需切断钢轨,安装轨道绝缘节,这对使用长钢轨线路妨碍很大,不仅需经常维修,还降低了安全性。采用电气绝缘,则无需切断钢轨,目前城市轨道交通系统中,普遍采用“S棒”进行电气隔离的数字音频轨道电路。数字音频轨道电路的原理图如图1所示。

数字轨道电路中,全部有源器件都集中在控制室内,室外设备仅包括由电容、线圈等组成的调谐盒及轨间的S型联接导线。调谐盒中有发射与接收线圈。数字轨道电路的发射单元以差分模式向另一端通过铁轨传输一个调制信号,在轨道电路的另一端提取这个信号。接收的信息和传送的信息经逐位比较确认相同时,完成对接收信息的验证,判断钢轨和轨道电路的工作状态。当轨道电路内有车占用时,由于列车车轴的分路作用,接收端检测出信号电平的变化,从而判断出有车到达该轨道电路。

2.1.2 利用轨道电路确定列车在线路中的位置

图2为利用轨道电路确定列车在线路中位置的原理图。在线路设计时,根据用户对列车运行密度的要求,将整个线路用S棒分割成若干个轨道区段,并对所有轨道区段进行统一编号。对线路地形及线路设备进行数字化描述后形成线路地图,贮存在轨旁和/或车载计算机中。为了防止相邻轨道电路音频信号的串扰,同时也为了准确判断列车越过轨道电路连界,相邻数字轨道电路采用不同的载频。列车在线路中运行时,其所在的轨道电路会给出占用指示,对轨道电路占用状态的连续跟踪,也就实现了对列车在线路中所处位置的连续跟踪。

为了保证安全,轨道电路任何形式的故障都表示为“有车占用”,为了避免错误的跟踪,系统对轨道电路的“连续占用”与“顺序出清”进行逻辑判断,保证列车跟踪的可靠性和安全性。

利用数字轨道电路对列车进行定位是目前城市轨道交通系统中应用最为普遍的技术手段。

2.2 信标定位

信标是安装在线路沿线反映线路绝对位置的物理标志。信标分有源信标和无源信标两种,有源信标可以实现车地的双向通信,无源信标类似于非接触式IC卡,在列车经过信标所在位置时,车载天线发射的电磁波激励信标工作,并传递绝对位置信息给列车。

城市轨道交通系统中所使用的信标大部分为无源信标,安装在轨道沿线。信标的作用是为列车提供精确的绝对位置参考点(也可以提供线路的坡度、弯度等其它信息)。由于信标提供的位置精度很高,达厘米量级,常用信标作为修正列车实际运行距离的手段。

采用信标定位技术的信息传递是间断的,即当列车从一个信息点获得地面信息后,要到下一个信息点才能更新信息,若其间地面情况发生变化,就无法立即将变化的信息实时传递给列车,因此,信标定位技术往往作为其它定位技术的补充手段。

2.3 裂缝波导定位技术

采用裂缝波导作为列车信息传输的原理框图见图3,列车定位原理图如图4所示。裂缝波导是52.5mm×105mm×2mm中空的铝质矩形方管,在其顶部每隔60mm开有窄缝,采用2.715GHz的连续波频率通过裂缝耦合出不均匀的场强,对连续波的场强进行采集和处理,并通过计数器确定列车经过的裂缝数,从而计算出列车走行的距离,确定列车在线路中的位置。

裂缝波导除了传输用于裂缝计数的2.715GHz的连续波频率外,主要用于车地信息交换的传输通道,车地通信的载频范围为2.4~2.4853GHz,该频段内的微波信号沿波导均匀辐射。

2.4 电缆环线定位技术

在整个轨道线路沿线铺设电缆环线,电缆环线位于轨道中间,每隔一定的距离交叉一次。列车经过每个电缆交叉点时通过车载设备检测环线内信号的相位变化(相位变化原理见图6)。并对相位变化的次数进行计数,从而确定列车运行的距离,达到对列车定位的目的。

2.5 无线扩频通信定位技术

利用无线扩展频谱通信技术确定列车在线路中的位置借鉴了军用定位技术。利用车站、轨旁和列车上的扩频电台;一方面通过这些电台在列车与轨旁控制室之间传递安全信息,另一方面也利用它们对列车进行定位。轨旁电台的位置是固定不变的,并经过精确测量。所有的电台都由同步时钟精确同步。轨旁计算机或车载计算机利用不同电台传输信息的时间延时可以精确计算出列车的位置。

图7为基于无线扩频通信的列车定位系统原理图。由分布的电台构成无线通信网,多数情况下,站间可以被无线电可靠地覆盖,而且有冗余。这种冗余是一种自愈式的结构,当其中一个电台故障时,系统可以重新组织,并自动报告故障电台位置或编号,不会影响通信和对列车的控制。通常一个电台的信息会有两个甚至三个电台接收,扩展频谱技术最初是为军事应用设计的,具备在恶劣电磁环境下可靠传输的能力。

每隔0.5s可对每辆列车的位置进行检测,对列车定位的精度可达±5m。

3 车载列车定位技术

车载定位设备主要采用安全型编码里程计。编码里程计通过编码盘与轮轴耦合,驱动一个或多个装在编码盘四周的光电传感器。这些传感器产生一个和速度成比例的脉冲序列,车载设备通过采样电路得到列车运行的速度和距离。图8是编码里程仪测距原理图。

列车车轮运动一周,编码里程计输出64个或128个脉冲。列车车轮运动一周,编码里程计输出的脉冲数越多,测速和/或测距精度越高。

列车运动速度=单位时间内编码里程计输出的脉冲数×(πΦ/编码里程计每周输出的脉冲数)列车运动距离=编码里程计输出的脉冲数×(πΦ/编码里程计每周输出的脉冲数)式中Φ为列车车轮的直径。由于列车周而复始地运动,车轮轮径不断磨损,目前城市轨道交通系统中允许列车车轮的轮径范围为840mm~770mm,因此(是个变量,要定期或不定期地进行修正。

利用车载编码里程计确定列车运行的距离还需要考虑列车运动过程中车轮的空转和打滑。实际工程应用中,可以采用信标、轨道电路分界点、电缆环线等手段传送给列车绝对位置标识,这些标识在线路中的位置是固定不变的,并经过精确测量。车载设备接收到这些标识后,对车载里程计的测距误差进行修正。通常车载里程计只给出列车对应地面某个标识的相对距离,保证列车在线路中运行时,车载定位设备的距离测量不会有大的积累误差。

4 结束语

利用各种技术手段确定列车在线路中的位置、对列车进行精确定位的目的是对线路中所有的列车进行统一管理,确保各列车之间安全运行的最小间隔,保证列车运行的安全;同时,通过统一的调度和管理,保证线路中运营列车的均匀分布。本文介绍的各种定位技术在城市轨道系统中均有成功应用的实例,具体系统中采用何种定位技术,取决于对线路运输能力的要求。通常,城市轨道交通系统中需要综合运用多种定位技术。如广州地铁一号线,正线上采用数字轨道电路,车站加装精确同步环线,利用车载编码里程仪经过轨道电路【摘 要】 实时、精确地确定列车在线路中的位置是保证安全、发挥效率、提供最佳服务的前提。本文介绍了在城市轨道交通系统中已获得成功应用的各种列车定位方法,包括轨旁和车载定位技术。

随着城市人口的不断增加,城市交通问题日益突出。地铁、轻轨具备客运量大、污染少等特点,是解决大中城市交通问题的首选方案。由于轨道交通列车运行密度高、车站间距近、安全性要求高,列车自动控制系统及列车本身需要实时了解列车在线路中的精确位置,分布于轨旁及列车上的列车自动控制系统根据线路中列车的相对位置实时、动态地对每一列车进行监督、控制、调度及安全防护,在保证列车运行安全的前提下,最大限度地提高系统的效率,为乘客提供最佳的服务。

实时、精确地确定列车在线路中的位置是保证安全、发挥效率、提供最佳服务的前提。列车自动控制系统利用轨旁及车载设备对列车进行实时的跟踪。轨旁定位主要采用轨道电路、信标、电缆环线、裂缝波导、扩频电台等技术手段,列车自身的定位可依赖于安装在轮轴上的编码里程仪实现,通过车地之间的信息传输通道,实现轨旁与列车之间实时的信息交换,实时控制列车在线路中的运行。

2 轨旁定位技术

2.1 利用轨道电路的定位技术

2.1.1 轨道电路的定位原理

轨道电路是以铁路线路的两根钢轨作为导体,并用引接线连接信号发送、接收设备所构成的电气回路。轨道电路有机械绝缘和电气绝缘两种类型。采用机械绝缘的轨道电路,需切断钢轨,安装轨道绝缘节,这对使用长钢轨线路妨碍很大,不仅需经常维修,还降低了安全性。采用电气绝缘,则无需切断钢轨,目前城市轨道交通系统中,普遍采用“S棒”进行电气隔离的数字音频轨道电路。数字音频轨道电路的原理图如图1所示。

数字轨道电路中,全部有源器件都集中在控制室内,室外设备仅包括由电容、线圈等组成的调谐盒及轨间的S型联接导线。调谐盒中有发射与接收线圈。数字轨道电路的发射单元以差分模式向另一端通过铁轨传输一个调制信号,在轨道电路的另一端提取这个信号。接收的信息和传送的信息经逐位比较确认相同时,完成对接收信息的验证,判断钢轨和轨道电路的工作状态。当轨道电路内有车占用时,由于列车车轴的分路作用,接收端检测出信号电平的变化,从而判断出有车到达该轨道电路。

2.1.2 利用轨道电路确定列车在线路中的位置

图2为利用轨道电路确定列车在线路中位置的原理图。在线路设计时,根据用户对列车运行密度的要求,将整个线路用S棒分割成若干个轨道区段,并对所有轨道区段进行统一编号。对线路地形及线路设备进行数字化描述后形成线路地图,贮存在轨旁和/或车载计算机中。为了防止相邻轨道电路音频信号的串扰,同时也为了准确判断列车越过轨道电路连界,相邻数字轨道电路采用不同的载频。列车在线路中运行时,其所在的轨道电路会给出占用指示,对轨道电路占用状态的连续跟踪,也就实现了对列车在线路中所处位置的连续跟踪。

为了保证安全,轨道电路任何形式的故障都表示为“有车占用”,为了避免错误的跟踪,系统对轨道电路的“连续占用”与“顺序出清”进行逻辑判断,保证列车跟踪的可靠性和安全性。

利用数字轨道电路对列车进行定位是目前城市轨道交通系统中应用最为普遍的技术手段。

2.2 信标定位

信标是安装在线路沿线反映线路绝对位置的物理标志。信标分有源信标和无源信标两种,有源信标可以实现车地的双向通信,无源信标类似于非接触式IC卡,在列车经过信标所在位置时,车载天线发射的电磁波激励信标工作,并传递绝对位置信息给列车。

城市轨道交通系统中所使用的信标大部分为无源信标,安装在轨道沿线。信标的作用是为列车提供精确的绝对位置参考点(也可以提供线路的坡度、弯度等其它信息)。由于信标提供的位置精度很高,达厘米量级,常用信标作为修正列车实际运行距离的手段。

采用信标定位技术的信息传递是间断的,即当列车从一个信息点获得地面信息后,要到下一个信息点才能更新信息,若其间地面情况发生变化,就无法立即将变化的信息实时传递给列车,因此,信标定位技术往往作为其它定位技术的补充手段。

2.3 裂缝波导定位技术

采用裂缝波导作为列车信息传输的原理框图见图3,列车定位原理图如图4所示。裂缝波导是52.5mm×105mm×2mm中空的铝质矩形方管,在其顶部每隔60mm开有窄缝,采用2.715GHz的连续波频率通过裂缝耦合出不均匀的场强,对连续波的场强进行采集和处理,并通过计数器确定列车经过的裂缝数,从而计算出列车走行的距离,确定列车在线路中的位置。

裂缝波导除了传输用于裂缝计数的2.715GHz的连续波频率外,主要用于车地信息交换的传输通道,车地通信的载频范围为2.4~2.4853GHz,该频段内的微波信号沿波导均匀辐射。

2.4 电缆环线定位技术

在整个轨道线路沿线铺设电缆环线,电缆环线位于轨道中间,每隔一定的距离交叉一次。列车经过每个电缆交叉点时通过车载设备检测环线内信号的相位变化(相位变化原理见图6)。并对相位变化的次数进行计数,从而确定列车运行的距离,达到对列车定位的目的。

2.5 无线扩频通信定位技术

利用无线扩展频谱通信技术确定列车在线路中的位置借鉴了军用定位技术。利用车站、轨旁和列车上的扩频电台;一方面通过这些电台在列车与轨旁控制室之间传递安全信息,另一方面也利用它们对列车进行定位。轨旁电台的位置是固定不变的,并经过精确测量。所有的电台都由同步时钟精确同步。轨旁计算机或车载计算机利用不同电台传输信息的时间延时可以精确计算出列车的位置。

图7为基于无线扩频通信的列车定位系统原理图。由分布的电台构成无线通信网,多数情况下,站间可以被无线电可靠地覆盖,而且有冗余。这种冗余是一种自愈式的结构,当其中一个电台故障时,系统可以重新组织,并自动报告故障电台位置或编号,不会影响通信和对列车的控制。通常一个电台的信息会有两个甚至三个电台接收,扩展频谱技术最初是为军事应用设计的,具备在恶劣电磁环境下可靠传输的能力。

每隔0.5s可对每辆列车的位置进行检测,对列车定位的精度可达±5m。

3 车载列车定位技术

车载定位设备主要采用安全型编码里程计。编码里程计通过编码盘与轮轴耦合,驱动一个或多个装在编码盘四周的光电传感器。这些传感器产生一个和速度成比例的脉冲序列,车载设备通过采样电路得到列车运行的速度和距离。图8是编码里程仪测距原理图。

列车车轮运动一周,编码里程计输出64个或128个脉冲。列车车轮运动一周,编码里程计输出的脉冲数越多,测速和/或测距精度越高。

列车运动速度=单位时间内编码里程计输出的脉冲数×(πΦ/编码里程计每周输出的脉冲数)列车运动距离=编码里程计输出的脉冲数×(πΦ/编码里程计每周输出的脉冲数)式中Φ为列车车轮的直径。由于列车周而复始地运动,车轮轮径不断磨损,目前城市轨道交通系统中允许列车车轮的轮径范围为840mm~770mm,因此(是个变量,要定期或不定期地进行修正。

利用车载编码里程计确定列车运行的距离还需要考虑列车运动过程中车轮的空转和打滑。实际工程应用中,可以采用信标、轨道电路分界点、电缆环线等手段传送给列车绝对位置标识,这些标识在线路中的位置是固定不变的,并经过精确测量。车载设备接收到这些标识后,对车载里程计的测距误差进行修正。通常车载里程计只给出列车对应地面某个标识的相对距离,保证列车在线路中运行时,车载定位设备的距离测量不会有大的积累误差。

4 结束语

利用各种技术手段确定列车在线路中的位置、对列车进行精确定位的目的是对线路中所有的列车进行统一管理,确保各列车之间安全运行的最小间隔,保证列车运行的安全;同时,通过统一的调度和管理,保证线路中运营列车的均匀分布。本文介绍的各种定位技术在城市轨道系统中均有成功应用的实例,具体系统中采用何种定位技术,取决于对线路运输能力的要求。通常,城市轨道交通系统中需要综合运用多种定位技术。如广州地铁一号线,正线上采用数字轨道电路,车站加装精确同步环线,利用车载编码里程仪经过轨道电路和环线的同步后的距离数据,实现列车的自动驾驶。

除了本文介绍的各种列车定位方法,还有其它各种列车定位技术,如采用雷达测速、测距的定位方法,采用计轴设备确定列车位置的技术,大铁路上还可以采用GPS、GMS-R等技术对列车进行定位,GSM-R是国际铁路联盟(UIC)和欧洲电信标准协会(ETSI)为欧洲新一代铁路开发的无线移动通信技术标准。随着计算机技术和通信技术的发展,相信将有越来越多技术含量更高的先进列车定位技术问世。

标签:城轨里测速定位的作用


已有3位网友发表了看法:

  • 访客

    访客  评论于 2022-07-10 08:34:10  回复

    路内有车占用时,由于列车车轴的分路作用,接收端检测出信号电平的变化,从而判断出有车到达该轨道电路。2.1.2 利用轨道电路确定列车在线路中的位置图2为利用轨道电路确定列车在线路中位置的原理图。在线路设计时,根据用户

  • 访客

    访客  评论于 2022-07-10 01:07:55  回复

    列车进行实时的跟踪。轨旁定位主要采用轨道电路、信标、电缆环线、裂缝波导、扩频电台等技术手段,列车自身的定位可依赖于安装在轮轴上的编码里程仪实现,通过车地之间的信息传输通道,实现轨旁与列车之间实时的信息交换,实时控制列车在线路中的运行。2 轨旁定位技术2.1 利用轨

  • 访客

    访客  评论于 2022-07-09 21:01:09  回复

    量或变量。一般加速度传感器根据压电效应原理工作,加速度传感器利用其内部由于加速度造成的晶体变形产生电压,只要计算出产生的电压和所施加的加速度之间的关系,就可将加速度转化成电压输

欢迎 发表评论:

黑客教程排行
最近发表
标签列表