右侧
黑客技术
当前位置:网站首页 > 网络黑客 > 正文

包含自主研发质子刀定位精度微米级的词条

作者:hacker发布时间:2022-08-05分类:网络黑客浏览:100评论:2


导读:导航:1、世界著名AAO技术在哪个国家?2、哪里可以找到质子刀和重离子刀的资料?3、华工科技质子刀前景4、什么是质子刀?5、欧洲正在进行的是什么实验?是大...

导航:

世界著名AAO技术在哪个国家?

半导体加工设备

基本被日本、美国霸占。

目前蚀刻设备精度最高的是日立。比如东丽,帝人的炭纤维,超高精密仪器,数控机床,光栅刻画机(这个最牛的也是日立,刻画精度达到10000g/mm ),光刻机(ASML)等等,这些是美日严格限制出口的。

一个块CPU要制造出来,需要N多设备和材料。全球前十大半导体设备生产商中,有美国企业4家,日本企业5家。

半导体材料

生产半导体芯片需要19种必须的材料,缺一不可,且大多数材料具备极高的技术壁垒,因此半导体材料企业在半导体行业中占据着至关重要的地位。

而日本企业在硅晶圆、合成半导体晶圆、光罩、光刻胶、药业、靶材料、保护涂膜、引线架、陶瓷板、塑料板、 TAB、 COF、焊线、封装材料等14中重要材料方面均占有50%及以上的份额,日本半导体材料行业在全球范围内长期保持着绝对优势。全球70%的半导体硅材料,都是由日本信越化学提供。

超高精度机床

超高精度机床和材料学并为工业之母:是日本、德国、瑞士的天下,其中日本更是领先世界一大截。

世界最高精度机床主轴来自日本精工。

美国F22猛禽战机就用日本机床:SNK(新日本工机)的5轴龙镗铣。

yamazaki mazak(日本山崎马扎克)被瑞典皇家科学院评出的世界最佳公司、英国本地最佳工厂兼出口成就奖、美国制造工程师学会惠特尼生产力奖获得者、美军US.ARMY岩岛兵工厂联合制造技术中心的机床供应商及机械师培训方、波音集团的最佳机床设备供应商等等。mazak最拿手的环节,当属machining center(加工中心)。

全球超精密加工领域中精度最高的母机,来自于日本捷太科特Jtket的AHN15-3D自由曲面金刚石加工机,此设备主要用来对各种光学镜头和蓝光镜片模具进行超精密车削及研磨。这台机子仅从加工精度上讲比三台军工神器(美国LLNL的LODTM和DTM-3, 英国CUPE的OAGM2500)还要高出近8倍。

全球70%的精密机床都搭载着由日本Metrol研制的世界最高精度的微米级全自动对刀仪。

全球唯一一台突破纳米级加工精度的慢走丝电火花加工机,来自日本sodick(沙迪克),sodick将电火花式加工与水刀式加工结合成功开发出世界首台混合动力线切割放电加工机。

在任何尖端工业机械上都不可缺的传动部件,日本HDS的高精密、大扭矩、轻量化、回力小的谐波减速机在全球拥有4成以上份额,NASA、空客、蔡司外科手术镜等都是靠它来传递反馈设备的停走、动力转向、精度定位。

双主轴双刀塔车床的代表者——okuma(大隈株式会社)。okuma最令人称赞的是这家公司是全球机床界中的“全能型制造商”,几十年来一直坚持从核心部件(驱动器、编码器、马达、主轴等)到数控操作系统到终端,全部自主设计开发完成,真正实现了软硬兼备。

日本松浦机械几乎霸占了欧洲高端发动机加工,历来都是超跑法拉利,布加迪威航的客户。

中国高精尖科研设备铜材主要提供商,国家重点扶持机构中铝洛铜向日本生田产机购买一整条伸铜双面铣面切削生产线;世界几乎所有汽车品牌上的铜材的加工过程都要利用生田产机的设备完成。

工业机器人

工业机器人是未来50年的全球大力发展的产业。目前工业机器人的技术基本掌握在日本手中。

机器人四大家族:日本发那科、安川电机、瑞典ABB、德国库卡。其中发那科是全球工业机器人销售记录保持者、利润保持者、技术领导者。德国库卡最弱,其核心技术基本外购,目前被美的收购。

工业机器人有三大核心技术其实也就是三大核心零部件的关键技术:控制器(控制技术),减速机,机器人专用伺服电机及其控制技术。

一线厂家包括:发那科(Fanuc 日本)、安川(Yaskawa 日本)、ABB(瑞士)、库卡(KUKA 德国)。二线厂商包括Comau(意大利)、OTC(Daihen旗下 日本)、川崎(Kawasaki 日本)、那智不二越(Nachi-Fujikoshi 日本)、松下(Panasonic 日本)等等。

顶尖精密仪器

美日德基本垄断,其中美国10家,日本6家,德国4家,英国2家 。

美日都是诺贝尔奖大国,日本从2000年开始基本每年一个诺贝尔奖,其中之一就是离不开其高端仪器的制造,使用。

举几个例子。日本SATAKE长期致力于发展人类三大粮食作物之一的稻米方面机械设备,旗下囊括的粮食食品设备、实验检测设备、关联环境机械设备等方面市占率均为第一位。全球主要稻米粮食国家政府与企业均与SATAKE有合作,包括中国、美国、东南亚、南美等地区。

由日立为加拿大维多利亚大学定制打造的世界最强大的科研显微镜已于去年正式投入使用。

目前全球高端电子显微镜主要有两大品牌:日本的JEOL和美国的FEI。全球唯一陶一台原子纳米级全息电镜也已经被日本开发成功——来自日立。

医疗硬件的最高峰之一,全球仅有的6台投入使用的重粒子癌放疗设备有5套在日本,1套在德国,目前选择不开刀而接受重粒子线放疗的患者中有80%是在日本进行的。

医疗科技硬件两大最高峰的另一个——质子束放疗加速器,由日立与北海道大学发明,整套设备售价2亿dollar+,全球装机量不超15台。

世界首台带立体定向功能的适形调强放疗设备并用于胰腺癌治疗——三菱重工。

世界首个不依靠科研反应堆,成功商业化为医院专用的硼中子捕捉疗法(BNCT)设备——住友重机械-京都大学。BNCT是不需上手术台的癌治疗手段之一,日本产学界合作。

世界最速兼唯一有能力探测外银河系高能量的全天候天文仪器——maxi(全天候X射线监视装置)。搭载了由jaxa和riken共同开发的世界最广视野狭缝监视摄像机(12固态+2气态),放置于国际空间站日本实验舱kibo号外平台。

世界首支行星观测用(极紫外分光)太空望远镜——日本Sprint-A Sprint-A。

jeol利用最新独自研发的12极子球面像差校正器,成功推出最高加速电压达300kv的新一代冷场发射球差校正透射电镜——jem-arm300f,巩固了自己在电子显微镜界的世界领先地位。

世界最高波束亮度、强度生成能力的能量回收光源光阴极直流电子枪——日本pearl。

日立的质子束癌症放疗设备已经在全世界医院癌症科NO.1的美国MD安德森进行了2400+实例,此外美总统御用医院梅奥诊所,美国国家癌症研究所NCI唯一指定的儿童综合癌症治疗兼研究机构St.Jude Children's Research Hospital,欧洲最大规模肿瘤科的德国海德堡大学医院都在利用日立的质子束放疗设备。

哪里可以找到质子刀和重离子刀的资料?

质子刀:是利用质子线所特有的Bragg峰治疗肿瘤的新技术。Bragg峰是一个高剂量区,通过调整Bragg峰的位置,使肿瘤位于高剂量区内受到大剂量照射,正常组织位于高剂量区外受量减少。该设备的造价昂贵,目前我国尚无这一设备。

-------------------------------------------------------

质子刀催生神经肿瘤治疗新时代

标志着神经肿瘤治疗进入新时代的治疗全身肿瘤最佳设备质子治疗系统在淄博万杰医院投入临床使用200余名来自全省神经肿瘤医学领域的专家教授,现场参观了淄博万杰医院质子治疗中心,并围绕质子刀的临床应用等神经肿瘤治疗新进展进行了深入研讨淄博万杰医院作为肿瘤适形放疗中心,对颅内神经肿瘤有成熟的治疗方法颅内肿瘤的治疗一般采取常规手术治疗和传统的放射治疗手术治疗,人为因素和肿瘤生长位置限制了治疗效果淄博万杰医院于2002年成功引进国内最先进质子治疗系统并组建国内第一家质子治疗中心,使我国肿瘤放射治疗技术达到世界领先水平质子治疗系统以其高能量高准确性副作用小等诸多优点,可射达人体任何部位的肿瘤,而且能定点定向适形准确地击中肿瘤,消灭病变组织,又能保证正常组织不受损伤。

----------------------------

美国得州大学的癌症治疗中心投资1.25亿美元成立的质子治疗中心以最先进的技术治疗癌症患者,每年可治疗3500位肺癌、前列腺癌、头颈部癌症及眼癌的患者。

质子治疗是放射治疗的最先进技术,它和传统的X光放射治疗不同的是质子射线在穿越的路径上只会释放出少数的能量,只有在达到治疗深度时才会释放出大量能量,所以放射线对正常的组织影响不大。

--------------------------------------------------------------

加快推进医疗卫生重点项目建设。建设南汇、奉贤中心医院和13个急救分站(点)建设项目,以及400所村卫生室改造项目,引导市级优质医疗资源支持郊区卫生事业,提高郊区农村医疗服务水平。推进上海市第六人民医院门诊医技楼和华东医院市民门急诊楼改造等项目,抓紧开展质子刀项目前期工作。

--------------------------------------------------------------------

096.简述立体定向放射神经外科的原理。

(1)立体定向放射神经外科治疗疾病所需设备有直线加速器、γ-刀、回旋加速器以及近距离遥控后装机。由以上装置提供治疗所需用的X射线、γ射线、电子束、质子束、重粒子束以及间质内放疗所用的同位素;(2)借助高精度的立体定向仪,在CT、MRI和DSA等影像技术的参与下对治疗靶点施行准确定位,确定靶点的坐标;(3)用治疗计划系统,定出治疗计划;(4)将靶点的三维坐标参数转换到照射装置的坐标系统中,通过控制入射线方向及其运行轨迹,使射线在靶点处聚集,以达到对靶点的治疗。

097. 简述立体定向治疗的方法、应用范围、并发症。

立体定向反射治疗近年来衍生出许多新的治疗技术方法,如采用60Co或直线加速器为放射源的γ刀、X刀;以重离子加速器为放射源的离子刀;以放射性同位素为放射源的肿瘤间质弧瘤腔内近距离放射;经定向手术病变部位预先放置导管后装治疗;术中瘤床的放疗等。应用于脑血管畸形、某些颅内肿瘤及功能性疾病。主要并发症为放射性脑坏死、靶点周围脑组织水肿、病灶出血、神经功能障碍。

098.简述立体定向毁损靶点的方法。

(1)射频电热毁损:1.射频电凝:电凝温度在60℃-80℃;毁损区大小用电凝时间控制,一般5 s-30 s;2.感应电热(2)直流电解;(3)机械切割:用特制的切割刀在靶结构进行机械切割;(4)药物注射:向靶区注射神经破坏药物,常用酒精;(5)冷冻法:用双腔脑针,冷却剂用液氮;(6)超声波;(7)放射性毁损:1.放射性核素脑内植入;2.重离子体外照射;3. γ刀、X刀等手段。

026.简述介入放射治疗在神经外科中的应用概况。

1.治疗脑动脉瘤:利用可检测的可脱性球囊等进行血管内栓塞治疗,能在病人完全清醒的状态下操作,连续监视神经功能,使大多数中大型或巨大形手术难以完成的动脉瘤通过此技术可以进行治疗;2.治疗脑动静脉畸形:手术难以完成的主要功能区及脑深部的动静脉畸形均能用此技术取得满意效果;3.治疗动脉痉挛和动脉狭窄:对蛛网膜下腔出血后的症状性血管痉挛药物治疗不起作用的,血管成形术可发挥效果;4.脑膜瘤术前颈外动脉栓塞术:可减少术中出血,使手术视野清楚,易于彻底切除肿瘤;5.选择性或超选择性动脉内灌注抗癌药物治疗脑胶质瘤:此方法优于静脉给药途径,可减少全身反应,增加局部药物浓度,达到更好的治疗作用;6.其他:治疗Galen’s静脉瘤,脊髓的血管畸形,脑栓塞后的溶栓治疗。

062.简述光动力学治疗脑肿瘤的原理及概况。

某些光敏物质如荧光素、伊红、四环素及圤啉类化合物可被恶性肿瘤细胞吸收并大量积储于胞浆的线粒体内。积存量可较正常组织细胞大5-20倍,积存时间可长达48小时。在光的照射下,含有光敏物质的肿瘤细胞因发生物理或化学反应失去活力而达到治疗目的。但多数光敏物质不能通过血脑屏障,大大防碍了光动力治疗在脑瘤中的作用。近年来发现用醋酸及硫酸处理的血圤啉衍生物不仅可以通过血脑屏障,而且可以进入瘤细胞。因此,用它来治疗脑瘤不仅有可靠的理论依据,而且将大大提高该疗法的疗效。

064.简介硼中子俘获治疗。

硼中子俘获治疗(BNCT)是利用发生在肿瘤细胞内的原子核反应摧毁肿瘤的治疗方法。先给患者注射稳定性同位素10硼(10B)。10B进入体内后,迅速在肿瘤病人的细胞中浓聚,然后用高能量的热中子照射瘤体,照射时10B吸收中子变成11B原子,并立即发生原子核裂变,释放出α粒子;α粒子是高传能密度射线,能有效杀死肿瘤细胞,并对乏氧治疗细胞和分裂间期细胞同样有效,α粒子射程短,仅为10um,相当于一个细胞直径,故只能杀死发生核反应的肿瘤细胞,对周围正常细胞无影响,从而达到保护周围健康组织的目的,主要用于高级别胶质瘤。

065.简述脑肿瘤近距离放射疗法的概念及进展。

近距离放射疗法是针对常规远距离放疗而命名的,它是通过将放射源直接植入肿瘤内进行照射的一种放射治疗。包括间质放射疗法和腔(囊)内放射疗法。近年来,随着CT和MRI的应用,使肿瘤位置、大小及形状的确定更加精确。影像学方法与立体定向及电子计算机的结合,可在术前模拟同位素剂量曲线,在特定的肿瘤界限内准确地间质施放预定放射剂量;加之放射源植入方法的改进,如导管后装放射源技术和同位素胶体悬液腔内注射,使其可用于治疗各种组织成分的肿瘤,指征更加扩大,尤其对深部,功能区及高恶性脑瘤。

066.听神经瘤保留听力的适应证及手术技术要求有哪些?

听力保留的适应证:1.听力正常和接近正常的小听神经瘤;2.病例选择为起源于前庭神经、位于内听道中部;3.向桥小脑角侵犯不超过1.5cm的肿瘤。当肿瘤侧脑干听觉诱发电位波形基本正常或热反应降低时(提示肿瘤很可能起源于前庭神经),听力保留的可能性大,直径小于2cm听神经瘤,听力保留的可能性较大。

听力保留的技术要求是:1.骨窗要足够大;2.脑脊液释放降低颅内压;3.磨除内听道后壁(小于12mm);4.先囊内分块取瘤,后切除胞膜;5.显微镜的应用;6.双极电凝;7.术中脑干听觉诱发电位监护;8.保护第8颅神经和耳蜗神经的供血动脉。

068.立体定向放射神经外科的概念是什么?与普通神经外科有何区别?

根据立体定向原理,对颅内靶点使用一次大剂量窄束电离射线精确地聚集照射,使之产生局灶性破坏而达到治疗目的地学科叫做立体定向放射神经外科。它与普通神经外科有显著不同:1.不开颅、无出血,手术危险及术后并发症少;2.操作简单、定位准确、疗程短、创伤小、无需全麻、输血及相应并发症;3.病人不受年龄、体质及多次手术地影响,适应证宽、普通神经外科受医生经验,手术技巧影响较大。

069.立体定向放射神经外科的应用范围有哪些?

1.功能性神经外科疾病:(1)恶痛;(2)三叉神经痛;(3)顽固性精神病;(4)锥体外系疾病:帕金森氏病,其他基底节病如:扭转痉挛、痉挛性斜颈、手足徐动症;(5)癫痫;(6)功能性垂体切除,主要用于癌肿引起地恶痛,可能与抑制内分泌功能有关;2.非功能性神经外科疾病:(1)颅内肿瘤:脑膜瘤、鞍区肿瘤、松果体区肿瘤、听神经瘤、脑干肿瘤、脑深部肿瘤、颅内转移瘤;(2)脑血管病:动静脉畸形、动脉瘤、血管网状细胞瘤、颈静脉孔区海绵状血管瘤。

070.简述立体定向放射神经外科的生物学分期。

Ⅰ期:坏死期,靶点中心吸收剂量为200Gγ时,照射后第三、四周出现靶点坏死,急性变性和炎症反应;Ⅱ期:吸收期,坏死期后至照射后一年。坏死灶大量的细胞碎片吸收,胶质疤痕开始形成,坏死区周围星形胶质细胞增生,呈现慢性炎症反应,血管充血,新生毛细血管形成,血管内皮细胞增厚,此期可持续到照射后一年或更长时间;Ⅲ期:后期,自照射后一年开始,胶质疤痕形成,早期一系列变化消失,细胞碎片完全消除,形成境界清晰地胶质疤痕。

071.立体定向放射外科学治疗动静脉畸形的适应证有哪些?

通常认为,立体定向神经外科手术治疗脑动静脉畸形地适应证为以下几项:1.病变体直径小于3cm;2.脑深部病变,特别是位于脑干、丘脑或基底节等重要功能区的病变;3.病人年老体弱或因合并其他脏器疾病而不能耐受全麻和开颅手术打击地病人;4.开颅手术后仍残留有畸形血管团者;5.栓塞疗法失败者;6.病人拒绝全麻开颅手术者。

074.临床上如何合理选用γ刀和Χ刀?

1.小于30mm的脑肿瘤或动静脉畸形首选γ-刀;2.深部病变、位于脑干处病灶首选γ-刀;3.多发性小病灶,如多发性神经胶质瘤、多发性动静脉畸形首选γ-刀;4.小的鼻咽部癌肿首选γ-刀;5.功能性神经外科疾病首选γ-刀;6.恶性神经胶质瘤,除非体积小并在MRI上边界显示清楚,应首选Χ-刀;7.36mm-50mm直径病灶首选Χ-刀;8.需多次照射并大于40mm首选Χ-刀;9.颈部肿瘤定位困难需用Χ-刀

075. γ刀和Χ刀比较有何优点?

1.γ-刀的效果可靠;2.较γ-刀使用范围广,可扩展至颅底、颈、脊柱和其他部位且使用方便;3.适用于不同大小和不规则的肿瘤及脑血管畸形等;4.准直仪口径范围为4mm-50mm或更大;5.较γ-刀经济效益高,需投资、费用少;6.Χ-刀的立体定向定位装置安装较γ-刀简单;7.动态、分段均有适宜的准直仪相匹配;8.没有γ-刀应用5年需要更换60Co及处理放射性废料的问题。

076.简述伽玛刀治疗垂体腺瘤的适应证、注意点、主要并发症。

适应证1.垂体腺瘤(功能性微腺瘤尤佳)与视神经的距离大于5mm;2.垂体腺瘤手术失败或肿瘤残留或肿瘤突发;3.高龄、身体情况差、不能耐受手术;4.拒绝手术或不具备经蝶手术条件。为获取伽玛刀的良好效果,需注意以下几个方面:1.要精确定位;2.要选择适合的照射剂量,尤其是肿瘤所接受的边缘(最小)剂量是一重要因素;3.治疗前要了解肿瘤的大小,瘤与周围结构的关系、是何种类型的肿瘤。实践证实ACTH、GH、PRL功能性腺瘤的效果较好。

主要并发症:垂体功能低下发生率在10%-33%左右,一般与定位不精确和剂量过大有关,多在治疗后2月到6月出现短期功能不足表现。

077.简述单光子发射CT扫描机(SPECT)对治疗颅脑损伤的诊断价值。

SPECT对目前临床上无法用客观指标来确定的脑震荡和头部外伤综合征病人的诊断可提供一定的客观诊断依据,而对脑挫伤和颅内血肿患者比CT或MRI在某些程度上更加灵敏,发现病灶较CT或MRI在时间上早、数量上要多,且病灶发现的范围较CT要大,能更为确切的反应病人的临床状况和预测病情进展和预后。因此,将SPECT所提供的解剖信息结合起来,有利于进一步提高颅脑损伤的诊断准确率和指导临床治疗。

078.简述超声外科吸引器的工作原理。

超声外科吸引器(CUSA)是利用磁控超声振荡器将电能转换为机械运动,即通过改变电磁场的电流,产生23000次/秒的震动。这种极高速的振动通过连接体扩大,传导至手术探头(钛管),使其产生相应的纵向运动。探头接触到肿瘤组织,将之粉碎。与此同时,探头周围有适量的生理盐水溢出,与肿瘤碎屑混合乳化,并经探头上的吸引装置吸除。可见,超声外科吸引器兼具振荡粉碎,冲洗乳化和吸引三种功能。

079.简介激光器在神经外科的应用。

1.颅内肿瘤和椎管内肿瘤:可用CO2激光手术。选用低功率(1w-5w)的非聚焦光凝固肿瘤胞膜,使之皱缩,表面血管凝固,再用高功率(5w-100w)光束行肿瘤胞膜内切除,最后用低功率(1w-10w)光束逐渐切除肿瘤胞膜及小片残留。用激光切除肿瘤比较彻底,出血少、无菌、准确、对周围组织损伤小,因血管淋巴管已闭塞,可避免肿瘤细胞扩散;2.脑血管病:激光使动脉瘤内血栓形成,而对载瘤动脉和临近穿通支影响较小,激光也可使动静脉畸形病灶凝固;3.功能神经外科:治疗各种原因引起的慢性疼痛,控制三叉神经痛,血管性头痛和紧张性头痛;4.微血管吻合。

080.简述脑肿瘤的治疗进展。

1.以大骨瓣开颅,充分暴露为基本特征的颅底外科走向成熟:显微外科技术的提高,神经影像学和神经放射学的发展推动了包括脑干肿瘤在内的颅底外科的开展。脑干诱发电位等术中监测、激光的应用、肿瘤全切除率大大提高,手术死亡率、致残率明显下降;2.微侵袭神经外科已经崛起:以神经内窥镜技术、立体定向术和内窥镜辅助的神经外科迅速发展,使手术创伤小、反应轻、效果好;3.导航技术成为神经外科手术器械的精品:借助该系统对颅内病灶精确定位,选择最佳手术入路和最优的手术方案,减少或避免正常组织及重要结构的损伤;4.脑胶质瘤的基因工程已显现亮点:分子生物学与基因工程技术的发展,为神经外科疾病发病机制的认识和治疗提供了崭新的手段和思路。

081.简述脑干肿瘤显微手术治疗现状及注意事项。

现状:1.手术禁区已被突破:脑干司觉醒,呼吸和循环中枢,被视为手术禁区,90年代开始已被突破;2.国内处于世界领先水平。

注意事项:1.术前定位要准确;2.手术入路设计要合理;3.必须行显微手术;4.术中严密观察生命体征,神经电生理监护;5.应从肿瘤最接近脑干表面的部位进入髓内切除肿瘤,操作要轻柔、精细;6.延髓囟部上下4mm处操作要高度警惕呼吸障碍;7.术后入ICU密切监护;8.积极防治术后呼吸障碍和应激性溃疡,必要时呼吸机辅助呼吸。

084.何为细胞刀?近年来为何细胞刀成为治疗帕金森病(PD)的热门手段?

所谓细胞刀就是应用立体定向技术,在CT、MRI解剖定位的基础上,以微电极细胞外记录电生理技术记录靶点电信号,从而达到功能定位,然后实施射频毁损。细胞刀使手术定位更准确、安全、并发症少。立体定向外科手术治疗PD始于上世纪40年代,主要采用苍白球和丘脑毁损术,一直到60年代,仍是治疗PD的重要手段,效果良好。后来由于左旋多巴的出现,而被忽视。近年来再次成为热门的原因为:1.长期使用左旋多巴后药效减退和产生严重的副作用;2.1-甲基-苯基-四氢吡啶(MPTP)动物实验提示PD导致行动迟缓,可能是由于苍白球细胞异常放电所致;3.影像学技术(CT、MRI)和微电极技术的发展,使靶点的定位更准确,手术更加安全。

085.细胞刀治疗帕金森病(PD)的手术指征有哪些?

1.首先病人必须是确诊的原发性PD,没有小脑和锥体束系统的损害,并排除继发性帕金森病和PD叠加综合征的可能;2.病人一定经过全面和完整的药物治疗(主要是左旋多巴制剂)治疗,对左旋多巴有明显疗效,但疗效明显减退,和出现症状波动(剂末或开关现象)和(或)异动征等副作用;3.病人生活自理能力明显减退,病人病情为中度或重度,HOHEN和HAHR分级三级以上;4.无明显痴呆和精神症状,CT扫描脑部或MRI检查没有严重的脑萎缩;5.选择的病人能在术中与医生良好合作。

华工科技质子刀前景

一旦华工科技质子刀研发成功,前景是非常好的。华工科技质子刀项目是由华工科技牵头承担的国家重点研发计划专项“基于超导回旋加速器的质子放疗装备研发”项目。项目总投资5.97亿元,其中中央财政资金1.96亿元。质子放疗是目前国际公认的最前沿、最理想的肿瘤放射治疗技术之一,被称为“治癌利器”。

一、质子刀的治疗原理

质子刀为质子加速器的一种商业应用;其主要的应用领域在医学上为癌症肿瘤的放射性治疗,而在半导体或太阳能科学上则是切割晶圆或太阳能基板。质子刀之原理为利用带正电荷的质子在电场中持续加速,达到一定速度和能量之后,射入标的物之内,利用布拉格尖峰现象,对特定标的物内在某一深度位置释放大量能量,以达到对物体特定深度区域进行破坏之目的。质子刀治疗为全世界最先进的肿瘤放射治疗技术,但以质子刀为主要设备之质子治疗中心因为设置费用非常昂贵,到2012年为止全世界已成立的质子治疗中心只有约四十座,所治疗的病人总共约七万人。中国之第一座质子治疗中心于2004年12月开始临床使用。

二、华工科技简介

华工科技产业股份有限公司是国家重点高新技术企业,国家“863”高技术成果产业化基地,成立于1999年7月28日,2000年在深圳证券交易所上市,是华中地区第一家由高校产业重组上市的高科技公司,公司下属华工图像、正源光子、华工激光、高理电子、武汉法利莱等骨干企业。

未来,华工科技将通过实施三大战略——自主创新战略、品牌战略和国际化战略,实现企业可持续发展,实现“在光电子、信息安全与防伪领域,代表国家竞争力,具有国际竞争力”的奋斗目标,这是全体华工科技人发出的誓言,也是中国光电子行业领军企业责无旁贷应该承担的使命和责任。

什么是质子刀?

质子和重离子放疗的原理:

质子即氢原子剥去电子后带有正电荷的粒子;重离子即碳、氖、硅等原子量较大的原子核或离子。质子和重离子技术是放疗中的一种,是国际公认的放疗尖端技术,质子和重离子同属于粒子线,与传统的光子线不同,粒子线可以形成能量布拉格峰,能够在对肿瘤进行集中爆破的同时,减少对健康组织的伤害。

相对于开展百年之久的传统放疗,质子重离子治疗代表了放疗的最高技术和未来趋势,由于技术和价格因素,仅在德国、日本和美国以及我国等少数国家开展,全球范围内作为医疗用途的粒子装置仅有数十台。

放射治疗,作为一种经典的肿瘤物理治疗手段,已有100多年的历史,目前最常见的放射治疗技术有:立体适形放疗(3DCRT)和调强放疗(IMRT)。大约有70%的肿瘤患者在其病程的某一阶段需要接受放射治疗,可以说,放射治疗已经成为肿瘤治疗不可或缺的手段之一。

而质子和重离子放疗的出现,使得现代放射治疗又迈入了一个崭新的发展时代。此前常用的放射治疗,使用的是X线,也就是电子线;而质子重离子治疗,则使用质子线或重离子线,射线的粒子质量更大,对肿瘤的杀灭效应也更为强大。质子,是氢原子失去一个电子的粒子;重离子,是碳、氖、硅等原子量较大的原子失去一个或几个电子后的粒子。

目前肿瘤放疗界普遍认为质子重离子治疗通过集成高能物理、加速器制造、计算机、自动控制等新技术应用于肿瘤的影像成像、放疗计划、实施和质量控制,使肿瘤放疗的精确性达到当今最高水平,既能有效杀灭肿瘤细胞,又能最大限度保护周围健康组织,具有精度高、疗程短、疗效好、副作用小等优势。

常规放疗的射线是光子(如高能X 射线、60Co射线等),在穿透人体组织后能量会大量衰减,既影响了肿瘤靶区剂量分布,也导致周围组织会受到较大辐射损伤。而质子和重离子射线在进入人体的过程中剂量释放很少,但到达肿瘤靶区时能量全部释放,形成所谓的Bragg峰,类似于在肿瘤区域进行“立体定向爆破”,即肿瘤靶区接受了较大放射剂量,而周围组织的损伤则降到最低。

其中重离子放疗使用的是比质子具有更高能量的粒子射线(目前最常用的是碳离子),能有效杀灭乏氧的或放疗抵抗的肿瘤细胞,并且对各个细胞周期的肿瘤细胞都具有杀伤作用。

质子或碳离子经由同步加速器加速至约70%的光速时,这些离子射线被引出射入人体,在到达肿瘤病灶前,射线能量释放不多,但是到达病灶后,射线会瞬间释放大量能量,形成名为“布拉格峰”的能量释放轨迹,整个治疗过程好比是针对肿瘤的“立体定向爆破”,能够对肿瘤病灶进行强有力的照射,同时又避开照射正常组织,实现疗效最大化。

国际公认的、最先进的放疗技术是质子重离子治疗技术。其在对实体肿瘤进行射线“打击”时,能对肿瘤病灶进行强有力的照射,同时避开正常组织照射,从而实现疗效的最大化。 根据国际临床资料统计,对头颈部、脑、前列腺、软组织、肺、肝等部位肿瘤有较好疗效,对一些难以手术的癌症、常规放疗难以治愈的癌症有显著成效。质子治疗的适应症比较广泛,对于脑部良恶性肿瘤(脑膜瘤、脑转移瘤、垂体瘤、脑胶质瘤、听神经瘤、颅咽管瘤等)、脊髓肿瘤、脑血管疾病(脑动静脉畸形、海绵状血管瘤等)、头颈部肿瘤(鼻咽癌、口咽癌等)、颅底脊索瘤和软骨肉瘤、眼部病变、胸腹部肿瘤、儿科肿瘤等均有较好的疗效。国外临床治疗数据表明,质子治疗肿瘤有效率高达80%,被高能物理界和医学界评估为疗效最好、副作用最少的治疗方法。

质子装置介绍质子治疗系统是一套庞大、复杂而又及其精密的高科技设备。全套设备由质子加速器、束流输运系统、束流配送系统、剂量监测系统、患者定位系统和控制系统所构成,占地长70米。其核心之一是回旋加速器,用以产生高能质子射束;加速器磁铁直径434厘米,中210吨。它发出质子束能量高达230兆电子伏,足以用于治疗体内任何深度的肿瘤。临床治疗时,质子束经一系列装置引入到专用的治疗室,进入旋转治疗架。治疗架是控制投射的庞大旋转装置,占据三层楼空间,它可以在病人静卧的舒适条件下,从任意方向投射到病人的肿瘤区域,并保证准确性在一毫米以内. 治疗用的质子束,还需要根据病人病变的情况进行精细的调整,使之符合治疗的需要,以达到最佳剂量分布的目的。因此,质子治疗装置还设有调节和变换射束的照射系统。此外为了使如此庞大而精密的复杂设备准确可靠地运行,质子治疗装置带有完善的安全与控制系统,以保证病人与工作人员的安全。

质子治疗癌症主要优点包括:肿瘤邻近重要器官,病者亦可获得最好的疗效,而重要器官可受到保护;若肿瘤复发,患者还有再次接受质子治疗的机会;显著减少短期及长期副作用;提升癌症患者的生活质量;明显减少对发育中的少年儿童患者生长发育的影响;明显减少次发性癌症的风险 。

质子治疗适应症:

1、头颈部肿瘤:脑膜瘤、脑胶质瘤、颅咽管瘤、垂体肿瘤、颅底脊索瘤、颅底软骨肉瘤、前庭神经鞘膜瘤、鼻咽癌、鼻腔鼻窦恶性肿瘤、腮腺恶性肿瘤、口咽癌、口腔恶性肿瘤、腺样囊性癌、恶性黑色素瘤、软组织肉瘤、血管外皮瘤、复发性头颈部恶性肿瘤、髓母细胞瘤、室管膜瘤、面部纤维肉瘤、海绵状血管瘤、颅内生殖细胞瘤、血管内皮细胞瘤、神经纤维瘤、畸胎瘤、舌根癌、牙龈癌、骨巨细胞瘤、喉癌、淋巴瘤 原始神经外胚层肿瘤PNET。

2、胸部肿瘤:肺癌、恶性纵膈肿瘤包括恶性胸腺瘤、恶性胸壁肿瘤、恶性胸膜间皮瘤、肺部转移肿瘤、纵膈淋巴结转移肿瘤、食道癌、贲门癌、乳腺癌、上皮样肉瘤、尤文氏肉瘤、非霍奇金淋巴瘤。

3、腹部 盆腔及其他部位肿瘤:肝癌、胆囊癌、胆管癌、肝外胆管癌、胰腺癌、前列腺癌、子宫内膜癌、子宫颈癌、脊髓肿瘤、骶尾部脊索瘤/软骨肉瘤、骨肿瘤、肾癌、卵巢癌、平滑肌肉瘤、软组织肉瘤、复发性腹盆腔肿瘤、原始神经外胚层肿瘤PNET。

欧洲正在进行的是什么实验?是大型质子对撞机的什么实验么?

大型电子加速器(LEP)能够加速更重的粒子——质子,质子相互碰撞就能产生比现有加速器获得的粒子具有更高能量。

新型加速器——大型质子对撞机(LHC)能重新建立一些条件,其中包括能量密度——在约150亿年前宇宙诞生之后仅仅10亿分之一秒宇宙中存在的能量密度。

大型质子对撞机安放在圆周长约27公里的隧道中,隧道位于瑞士和法国边境地下深75米处。

大型质子对撞机面临的最重要一项任务是记录所谓的希格斯玻色子,希格斯玻色子是理论上预言的重粒子。

在实施大型质子对撞机计划时,共有来自34个国家150个研究实验室近2000名科学家参加,计划造价约为80亿美元,其中部分经费由美国提供。

大型强子对撞机竣工,这个地下圆环修建在日内瓦近郊的乡村。你可以把它看成科学史上尺寸最大、功能最强的显微镜。它将赋予我们前所未有的能力,探究发生在迄今为止距离最短(小到1纳纳米,即百亿亿分之一米)、能量最高状态下的物理过程。十多年来,粒子物理学家一直热切期盼着这样一个机会,去探索所谓“万亿能标”下的物理世界,因为其中的物理过程涉及的能量高达1万亿电子伏特。科学家预期,一些意义重大的全新物理现象,将在万亿能标中显现出来,比如难以捉摸的希格斯粒子(Higgs particle,科学家相信这种粒子给其他粒子赋予了质量)和暗物质粒子(这种粒子构成了暗物质,是宇宙中物质的主要组成成分)。

经过9年的建造,这台庞大的机器预计将在今年产生粒子束流。按照计划,LHC将接受一系列调试:从一个束流到两个束流,再到对撞的束流;从较低能标增加到万亿能标;从强度较弱的测试束流到适合快速采集数据、但更难控制的较强束流。调试过程的每一步都很艰难,需要5,000多名科学家、工程师和研究生通力合作才能攻克难关。为了探索这一高能前沿领域,物理学家们做了许多准备工作。2007年秋天,为了得到第一手资料,我走访了LHC项目组。虽然工程进度一再延误,但与我交谈的每一个人都对成功充满信心。粒子物理学界正热切等待着LHC的第一批成果。美国麻省理工学院的弗兰克·维尔策克(Frank Wilzek)谈到LHC的前景时,重复了物理学界的共识——LHC将开启“物理学的黄金时代”。

每次对撞都会喷出大量粒子,绝大多数是已知粒子,但偶尔也会出现一些新奇的粒子。

超级机器

只要它开始运行,就将产生出能量比以前高得多的质子束流。它的大约7,000 块磁铁被液氦冷却到2K以下,维持在超导状态运行,引导并聚焦着两个质子束流。质子束流的速度可达光速的99.9999991%。每个质子携带的能量将达到7万亿电子伏特,相当于质子静止质量所含能量的7,000倍(参照爱因斯坦质能公式E = mc2)。目前的最高能量记录保持者,是美国费米国家加速器实验室(Fermi National Accelerator Laboratory,位于伊利诺伊州巴达维亚市)的万亿电子伏特正负质子对撞机(Tevatron),而LHC产生的质子能量将是该记录的7倍。而且,根据设计参数,LHC产生的束流强度(也称亮度),将是万亿电子伏特正负质子对撞机束流的40倍。当LHC以最高能量状态满负荷运转时,在巨型圆环中绕行的所有粒子携带的总能量,大约相当于900辆时速100千米的小轿车所具有的总动能——如果用这些能量烧水的话,足可以冲出2,000升咖啡。

这些质子会分布在大约3,000个束团之中,沿着周长27千米的对撞机圆环运转。每个束团由多达1,000亿个质子组成,但在对撞点上,束团的尺寸只有银针大小:长不过几厘米,粗细仅有16微米(大约相当于最细的头发丝)。在圆环的四个对撞点上,这些银针一根接一根通过,每秒钟发生6亿多次粒子对撞。物理学家把对撞称为事例(event),这些对撞其实并不是质子与质子相撞,而是构成质子的更小粒子——夸克(quark)和胶子(gluon)之间的碰撞。最激烈的对撞将释放出大约2万亿电子伏特的能量,相当于相撞质子所携带能量的1/7。(由于相同的原因,尽管万亿电子伏特正负质子对撞机中运行的质子和反质子的能量可以达到1万亿电子伏特,但它们的能量还要再提高5倍,才能跨进万亿能标的门槛。)

四个巨型探测器建造在圆环的四个对撞点周围,最大的一个,能填满半个巴黎圣母院;最重的一个所用的铁,比埃菲尔铁塔还多。这些探测器将记录并测量每次对撞产生出的上千个粒子。尽管这些探测器尺寸巨大,安装精度却要求极高,一些部件必须定位在50微米的精度以内。

在两个最大的探测器中,每一个都拥有近1亿条数据流,每秒钟产生的数据能够写满10万张光盘——只需要6个月的时间,这些光盘就可以从地球堆到月球。因此,这些实验不会去记录所有的数据,而是设计了所谓的触发系统(trigger)和数据获取系统(data-acquisition)。这些系统就像垃圾邮件过滤器一样,每秒只筛选出100个看起来最有价值的事例,将它们的数据传送到CERN的LHC中央计算系统,以备存档和事后分析之用。

欧洲原子能研究中心是LHC的所在地。在那里,上千台计算机组成的计算集群,把过滤后的原始数据转化为更加紧凑的格式,供物理学家筛选研究。物理学家将通过一种所谓的“网格网络”(grid network)分析这些数据。这种网络由世界各地研究机构的数万台PC机组成,它们先连接到亚洲、欧洲和北美洲的12个大型网络集线中心,再通过专用光缆连接到CERN。

2007年11月上旬,圆环上相邻的磁铁进行了最后的连接;12月中旬,8个扇区中的一个已被冷却到运行所需的低温,第二个扇区的冷却工作也已展开。此前,一个扇区曾被冷却、加电,然后又回到室温。这些扇区先接受单独检测,然后再进行整体试运行。一旦通过检验,一个质子束流就会注入圆环,沿着两条束流管中的一条,在周长27千米的圆环中运转,2008年9月,开始正式运行。

向LHC主环提供束流的一系列小型加速器已通过验收,它们可以把能量为0.45万亿电子伏特的质子注入LHC。束流的第一次注入将是关键一步,LHC的科学家们将先注入低强度束流,以降低LHC硬件损毁的风险。只有对测试束流在LHC内部的运行情况进行仔细评估,并对引导磁场进行精确修正之后,科学家们才会注入强度更高的束流。LHC首次在7万亿电子伏特的设计能量下运行时,在圆环中顺时针和逆时针方向绕行的质子束团都只有一个。最终满负荷运转时,每个方向上将有约3,000个质子束团绕行。

如此慎重地对LHC加速器展开全面调试,肯定会查出许多问题。工程师和科学家们需要多少时间来解决这些问题,目前还无法预知。但如果一个扇区必须回到室温下进行维修,LHC的启动时间又将推迟好几个月。

LHC上的四个巨型探测器各负责一项实验,分别被称为ATLAS、ALICE、CMS和LHCb。它们的工期也很漫长,而且必须在束流调试开始之前完工。一些非常容易损坏的部件仍在陆续安装,比如2007年11月中旬被放置在LHCb中的所谓“顶点定位探测器”(vertex locator detector)。在访问期间,我这个许多年前念研究生时专攻理论而非实验物理的人,被密密麻麻的上千根电缆所震惊——正是这些电缆将探测器采集的数据一条一条传送出来。每一根电缆都有自己独特的标签,需要一丝不苟地准确安插到相应的插座上,并加以检测。

处理海量数据

当LHC在设计亮度下运行时,两个银针一样的质子束团相遇,将产生大约20次对撞事例。两次束团相遇的时间间隔仅为25纳秒,前一次束团相遇时向外喷射的粒子还来不及离开探测器外层,后一次束团相遇事件就已经发生了。位于探测器不同层中的元件,能够对穿过该元件的一些特定粒子作出特有的响应。每个事例都将产生大约1兆字节(MB)的数据,两秒钟就是1皮字节(PB,相当于10亿MB),这些数据流将通过上百万条通讯信道传送出来。

拥有多个级别的触发系统会把洪水般的数据减少到可以控制的程度。初级触发将收集和分析探测器中部分子系统的数据,根据一些独立要素挑选出其中最有价值的事例。比如,如果一个高能μ子的飞行径迹与束流轴的夹角偏大,这个事例就会被选中。这个所谓的“初级触发”由嵌合在硬件中的数百个专用计算机逻辑模块控制,每秒钟筛选出10万个束团的数据,供下一阶段的高级触发系统作进一步分析。

与初级触发不同的是,高级触发系统将收集探测器上数百万个信道传出的所有数据。该系统的软件运行在计算机集群上,对于初级触发筛选通过的每个束团,高级触发系统平均拥有10微秒的处理时间,足够去“重建”每一个事例。所谓“重建”,就是找出事例中所有粒子径迹的共同起点,并完整描述每个粒子的性质,包括它的能量、动量和轨迹等。

高级触发系统每秒钟将筛选出100个事例,上传给LHC的全球计算资源网络——LHC计算网格(LHC Computing Grid)的集线中心。网格系统能够综合利用网络上所有计算中心的处理能力。用户只须从当地研究所登录网格,即可利用网格的处理能力进行数据分析。

LHC计算网格可分为好几层。第零层就设在CERN,主要由上千台市面上可以买到的计算机处理器构成,既有PC台式机,也有最新推出的比萨饼盒大小的黑色“刀片”服务器,它们都被堆放在一排排架子上(参见右页插图)。CERN还在订购更多的计算机,不断添加到这个网格系统之中。为了最有效地利用资金,CERN负责人与许多家庭计算机用户一样,不会购买最新、最强的计算机,而是追寻最佳性价比。

LHC上四个探测器的数据获取系统会把数据传送到第零层上,这些数据将被保存在磁带上。在这个DVD刻录机和闪存早已普及的年代,仍然用磁带保存数据似乎有些过时和落后,但CERN计算中心的弗朗索瓦·格雷(Francois Grey)说,这是性价比最高、安全性最高的方式。

一旦开始运行,LHC将不断产生海量数据。CREN的数千台服务器被链接在一起,提供了管理这些数据所需的强大计算能力。

第零层将把数据分配给12个第一层计算中心,其中一个就设在CERN,另外11个分布在世界各地的其他主要研究机构,包括美国的费米实验室、布鲁克海文国家实验室,以及欧洲、亚洲和加拿大的几个研究中心。因此,未经处理的原始数据实际上拥有两个备份,一个保存在CERN,另一个分散在世界各地。第一层中的每个计算中心都会以紧凑格式,保存一份完整的数据,方便物理学家进行多种分析。

完整的LHC计算网格还包括第二层计算中心,主要由大学和研究所的小型计算中心构成。这些中心的计算机将为整个网格上的数据分析提供分布式处理功能。

今天北京时间下午3点30分这个巨大的对撞机已经启动了

标签:自主研发质子刀定位精度微米级


已有2位网友发表了看法:

  • 访客

    访客  评论于 2022-08-05 14:30:05  回复

    织,又能保证正常组织不受损伤。----------------------------美国得州大学的癌症治疗中心投资1.25亿美元成立的质子治疗中心以最先进的技术治疗癌症患者,

  • 访客

    访客  评论于 2022-08-05 11:18:12  回复

    中心以最先进的技术治疗癌症患者,每年可治疗3500位肺癌、前列腺癌、头颈部癌症及眼癌的患者。质子治疗是放射治疗的最先进技术,它和传统的X光放射治疗不同的是质子射线在穿越的路径上只会释放出少数的能量,只有在达到

欢迎 发表评论:

网络黑客排行
最近发表
标签列表